#mirror\_ob
mirror\_ob = bpy.context.active\_objects[0]
mirror\_ob.select = false # pop modifier\_ob from
print("popped")

tmodifie

modifier\_ob = bpy.context.selected\_objects[0]
print("Modifier\_object:" +str(modifier\_ob)name))

#modifier\_ob.select

print("mirror\_ob",mirror\_ob) print("modifier\_ob",modifier\_ob)

mirror\_mod \_\_modifier\_ob.modifiers.new("mirror\_mirror","MIRROR")

RESPONSIBLE

**26 SEPTEMBER 2019 - SCHIPHOL HOOFDGEBOUW** 

Asset Management

NL

The Institute of

# Future Energy Systems

26-9-2019

Prof. Dr. Ad van Wijk





Challenge the future

Delft University of Technology

# Levelized Cost of Electricity



Source: IRENA Renewable Cost Database and Auctions Database.

IRENA, January 2018, Renewable Power Generation Costs 2017





# 5 GW Mohammed Bin Rashid Al Maktoum Solar Park in Dubai

| -7 |  | SP. |
|----|--|-----|
|    |  |     |
|    |  |     |

rule of hole on halt the

- \$3.9 billion investment
- Central Tower
- Parabolic Troughs
- Auxiliary solar PV
- Tariff
- PPA
  - **Dispatch:**

15 hours storage

100 MW 3x200 MW 4x33 MW 7.3 ct/kWh 35 years between 4pm and 10am



Future Energy Systems

5

## Surface needed to produce all the world's energy 556 EJ = 155.000 TWh



#### 10% SOLAR AUSTRALIA

1.5% WIND PACIFIC OCEAN



# **Tokyo Olympic Games 2020**



Asian Development Bank



#### Hydrogen Pipelines (~2035)





## **Offshore Wind Development Germany**





# **Eemshaven; The Energy Harbor**



Norned Cable 700 MW Cobra Cable 700 MW (2019) Gemini Offshore Wind Farm 600 MW Onshore Wind Farms > 275 MW Nuon Magnum power plant 1,320 MW RWE Coal fired power plant 1,560 MW Engie Gas fired power plant 2,450 MW

Cable Inland 4,000 MW Expansion to 5,610 MW



## **Electricity and Gas Transport Grid**



### Hydrogen backbone the Netherlands 2030



- Low caloric gas pipelines will become available, because the Groningen gas field has to reduce production to 0 in 2030
- 1 Transport pipeline capacity about 10-15 GW
- New hydrogen pipeline connections to offshore wind farms
- Connections to Germany (Ruhr-area, Bremen-Hamburg and Belgium (Antwerp, Zeebrugge)
- European connections to France, Austria, Italy, etc.
  - Existing gas pipeline
  - Retrofitted compressors
  - New hydrogen pipeline



- Industrial cluster
- Hydrogen storage in salt cavern



# Hydrogen production

| Source                 | Process                                                            | Efficiency<br>Today           | HYDROGEN<br>Production technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------|--------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Natural gas<br>Bio Gas | Steam reforming<br>Auto-thermal reforming<br>Solid Oxide Fuel Cell | 70-75%<br>>75%<br>80% (40-40) | survey to the second se |
| Coal/Oil               | Gasification                                                       | 56%+ (=syngas)                | some cashcation H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Biomass                | Gasification                                                       | 44%+ (=syngas)                | Casification H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Electricity +<br>Water | Electrolysis<br>Alkaline and PEM                                   | 75-80% (90% exp.)             | same the second  |
| Sunlight +<br>Water    | Photoelectrochemical                                               | 14% (lab)                     | Energy source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



## 20 MW Alkaline Electrolyser

|                                                           | 5 MW module                                 | 20 MW module                                |  |
|-----------------------------------------------------------|---------------------------------------------|---------------------------------------------|--|
| Design capacity H <sub>z</sub>                            | 1000 Nm <sup>3</sup> /h                     | 4000 Nm <sup>3</sup> /h                     |  |
| Efficiency electrolyzer (DC)                              | > 82% <sub>HHV</sub> *                      | > 82% <sub>HHV</sub> *                      |  |
| Power consumption (DC)                                    | max. 4.3 kWh/Nm <sup>3</sup> H <sub>2</sub> | max. 4.3 kWh/Nm <sup>s</sup> H <sub>2</sub> |  |
| Water consumption                                         | <11/Nm <sup>3</sup> H <sub>2</sub>          | <11/Nm <sup>3</sup> H <sub>2</sub>          |  |
| Standard operation window                                 | 10% - 100%                                  | 10% - 100%                                  |  |
| H <sub>2</sub> product quality at electrolyzer outlet     | > 99.95% purity (dry basis)                 | > 99.95% purity (dry basis)                 |  |
| H <sub>2</sub> product quality after treatment (optional) | as required by customer, up to 99.9998 %    | as required by customer, up to 99.9998 %    |  |
| H <sub>2</sub> product pressure at module outlet          | ~300 mbar                                   | ~300 mbar                                   |  |
| Operating temperature                                     | up to 90 °C                                 | up to 90 °C                                 |  |

\* HHV = calculated with reference to higher heating value of hydrogen. All values may vary depending on operating conditions.







#### Gas and electricity consumption in the Netherlands

#### Solar power production in Germany



**ru** Delft

### Hydrogen storage in Salt Caverns



1 salt cavern can contain 6,000 ton hydrogen Equivalent of 240 GWh or 17 million home batteries (14 kWh)

### Salt formations and caverns in Europa



Red colored caverns in use for natural gas storage



### **Green Hydrogen Markets**

#### Chemical

Transport



1501

300

#### **Electricity Balancing**





#### Heating





# The Future is Electric!





## **Tesla Model S**

# **Toyota Mirai**









**T**UDelft

Future Energy Systems

20

# Hydrogen versus petrol safety







## Town Gas production Utrecht 1862-1959





# Remeha Hydrogen Boiler





# Ene Farm: Home Fuel cell systems Japan



- Japan 200.000 sold 2017
- Aim 1.4 million end 2020
- Panasonic with Viesmann started sales in UK and Germany in 2017
- Kyocera makes systems for restaurants, hotels, etc.









# **Defying Death Valley**





# Further reading about hydrogen www.profadvanwijk.com



